DataSheet.es    


PDF ATmega32U4 Data sheet ( Hoja de datos )

Número de pieza ATmega32U4
Descripción 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATmega32U4 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATmega32U4 Hoja de datos, Descripción, Manual

ATmega16U4/ATmega32U4
8-bit Microcontroller with 16/32K bytes of ISP Flash and
USB Controller
DATASHEET
Features
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
– 135 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16MHz
– On-Chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– 16/32KB of In-System Self-Programmable Flash
– 1.25/2.5KB Internal SRAM
– 512Bytes/1KB Internal EEPROM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85C/ 100 years at 25C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
Parts using external XTAL clock are pre-programed with a default USB bootloader
– Programming Lock for Software Security
JTAG (IEEE® std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
USB 2.0 Full-speed/Low Speed Device Module with Interrupt on Transfer Completion
– Complies fully with Universal Serial Bus Specification Rev 2.0
– Supports data transfer rates up to 12Mbit/s and 1.5Mbit/s
– Endpoint 0 for Control Transfers: up to 64-bytes
– Six Programmable Endpoints with IN or Out Directions and with Bulk, Interrupt or
Isochronous Transfers
– Configurable Endpoints size up to 256 bytes in double bank mode
– Fully independent 832 bytes USB DPRAM for endpoint memory allocation
– Suspend/Resume Interrupts
– CPU Reset possible on USB Bus Reset detection
– 48MHz from PLL for Full-speed Bus Operation
– USB Bus Connection/Disconnection on Microcontroller Request
– Crystal-less operation for Low Speed mode
Peripheral Features
– On-chip PLL for USB and High Speed Timer: 32 up to 96MHz operation
– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
Atmel-7766I-USB-ATmega16U4/32U4-Datasheet_072015

1 page




ATmega32U4 pdf
power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and
interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC Noise
Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC
conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is
sleeping. This allows very fast start-up combined with low power consumption.
The device is manufactured using the Atmel® high-density nonvolatile memory technology. The On-chip ISP
Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a
conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The
boot program can use any interface to download the application program in the application Flash memory.
Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing
true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on
a monolithic chip, the device is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications.
The ATmega16U4/ATmega32U4 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation
kits.
2.2 Pin Descriptions
2.2.1 VCC
Digital supply voltage.
2.2.2 GND
Ground.
2.2.3
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the device as listed on page 74.
2.2.4
Port C (PC7,PC6)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Only bits 6 and 7 are present on the product pinout.
Port C also serves the functions of special features of the device as listed on page 77.
2.2.5
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
ATmega16U4/32U4 [DATASHEET ]
Atmel-7766I-USB-ATmega16U4/32U4-Datasheet_072015
5

5 Page





ATmega32U4 arduino
The AVR Status Register – SREG – is defined as:
Bit
Read/Write
Initial Value
7
I
R/W
0
6
T
R/W
0
5
H
R/W
0
4
S
R/W
0
3
V
R/W
0
2
N
R/W
0
1
Z
R/W
0
0
C
R/W
0
SREG
• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable
control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of
the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by
hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.
The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the
instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the
operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T
can be copied into a bit in a register in the Register File by the BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD
arithmetic. See “Instruction Set Summary” on page 418 for detailed information.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V.
See “Instruction Set Summary” on page 418 for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s arithmetic complements. See “Instruction Set
Summary” on page 418 for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See “Instruction Set
Summary” on page 418 for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See “Instruction Set Summary” on
page 418 for detailed information.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See “Instruction Set Summary” on
page 418 for detailed information.
4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required
performance and flexibility, the following input/output schemes are supported by the Register File:
One 8-bit output operand and one 8-bit result input
Two 8-bit output operands and one 8-bit result input
ATmega16U4/32U4 [DATASHEET]
Atmel-7766I-USB-ATmega16U4/32U4-Datasheet_072015
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATmega32U4.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATMEGA32U28-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATmega32U48-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATMEGA32U68-bit MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar