DataSheet.es    


PDF UM1556 Data sheet ( Hoja de datos )

Número de pieza UM1556
Descripción VIPower M0-5 and M0-5Enhanced high-side drivers User manual
Fabricantes STMicroelectronics 
Logotipo STMicroelectronics Logotipo



Hay una vista previa y un enlace de descarga de UM1556 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! UM1556 Hoja de datos, Descripción, Manual

UM1556
User manual
VIPower M0-5 and M0-5Enhanced
high-side drivers
Introduction
The aim of this document is to give the design engineer a comprehensive “tool kit” to better
understand the behavior of VIPower high side switches, allowing easier design and saving
time and money.
Today’s VIPower high side switches represent the 5th generation of smart power drivers (the
so called M0-5). In this latest generation of drivers, all the experience and know-how derived
from previous generations have been implemented in order to improve robustness, increase
functionality and raise package density while maintaining lower prices.
The complexity of a modern High Side Driver (HSD) is still relatively low compared to many
other logic ICs. However, the combination of digital logic functions with analog power
structures supplied by an unstabilized automotive battery system across a wide temperature
range is very challenging for such a device.
The M0-5 components today meet all the above criteria, providing an optimal
price/performance ratio by offering the highest performance and robustness at excellent
prices.
September 2013
Doc ID 023520 Rev 2
1/87
www.st.com

1 page




UM1556 pdf
UM1556
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Monolithic digital HSD - application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Monolithic analogue HSD - application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hybrid analogue HSD – application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Voltage levels during reverse battery – resistor protection . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Logical levels check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Voltage levels during reverse battery using diode-resistor protection network. . . . . . . . . . 12
Positive ISO pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Negative ISO pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Voltage levels during reverse battery – MOSFET protection . . . . . . . . . . . . . . . . . . . . . . . 14
Hybrid HSD - reverse battery protection with self switch-on of the MOSFET. . . . . . . . . . . 16
Example - Self switch-on of MOSFET eliminated by Dgnd. . . . . . . . . . . . . . . . . . . . . . . . . 16
ISO-pulse transfer to I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Open load/short to Vcc condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Open load/short to Vcc condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
M0-5 – “Soft” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5 – “Hard” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5Enhanced – “Soft” short to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5Enhanced – “Hard” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5 – “Soft” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5 – “Hard” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
M0-5Enhanced – “Soft” short to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
M0-5Enhanced – “Hard” short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
System reaction time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
M0-5 High Side Driver with analogue current sense – block diagram . . . . . . . . . . . . . . . . 23
M0-5 current sense simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VSENSE vs IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VSENSE vs VOUT @ IOUT=ILIMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Current sense resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Switchable current sense resistor – example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
VSENSE measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VND5012A current sense voltage behavior – hard short to GND occurred (20 mΩ), thermal
shutdown was reached 344 ms after short-circuit to GND . . . . . . . . . . . . . . . . . . . . . . . . . 35
Analogue HSD – Circuit for open load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . 36
Analogue HSD – Open load detection in off-state (M0-5Enhanced) . . . . . . . . . . . . . . . . . 36
Digital HSD diagnostics – timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Inductive load – HSD turn-on phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Inductive load – turn-on example: VNQ5E050AK, L=260 mH, R=81 Ω . . . . . . . . . . . . . . . 40
Inductive load – HSD turn-off phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Inductive load – turn off example: VNQ5E050AK, L=260 mH, R=81 Ω . . . . . . . . . . . . . . . 43
Maximum turn-off current versus inductance – VND5E160AJ datasheet. . . . . . . . . . . . . . 46
Maximum demagnetization energy – VND5E160A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Demagnetization energy measurement – VND5E160AJ, relay 260 mH . . . . . . . . . . . . . . 47
External clamping - transil and diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Transil – V/A characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Peak pulse power vs pulse time (for transil 600 W@10/1000 µs series) . . . . . . . . . . . . . . 54
Equivalent pulses giving the same power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Maximum peak power as a function of initial temperature of the transil . . . . . . . . . . . . . . . 54
Maximum turn-off current versus inductance – VN5E025AJ datasheet . . . . . . . . . . . . . . . 57
Doc ID 023520 Rev 2
5/87

5 Page





UM1556 arduino
UM1556
General items
The maximum acceptable ground shift level is the maximum drop voltage on RGND that
does not influence the communication between HSD and µC.
STATUS signal level check: as seen in Table 1, the microcontroller can safely
recognize log. “L” when the input voltage is below VIL = 0.3 VDD = 0.3 × 5 = 1.5 V. The
maximum low level voltage on the HSD status pin VSTAT = 0.5 V. This means there is a
1.5 V – 0.5 V = 1 V safety margin for voltage drop on RGND.
INPUT signal level check: as seen in Table 1, the microcontroller output high level
(4.3 V) is clearly above the HSD minimum input high level (2.1 V). The voltage drop on
the protection serial resistor is relatively small: RPROT × IIH = 10 k × 10 µA = 0.1 V.
Hence, there is a 4.3 V – 0.1 V – 2.1 V = 2.1 V safety margin.
Result: the maximum acceptable drop voltage on RGND is 1 V. For safety reasons, we
consider VGND = 0.8 V for the following calculations.
2. Calculate resistor value
RGND I--S--V--(-o--G-n---N)--m--D--a---x-
RGND V-I--G--B--N-A---D-T--
=
=
3-0---.m--8---V-A--
2----0-1--0-4---m-V----A---
266.67Ω
70Ω
RG
N
D
=
220 Ω
3. Check power dissipation in reverse mode => select resistor package
Note:
PD = (---V-R---B-G---A--N--T--D-)---2- = 2-1---24---0-V---Ω-2-- = 0.89W Package = 2512
Power rating@70 °C of 2512 is 1 W
The device with only a resistor at the GND terminal doesn't clamp ISO pulses on the supply
line. Positive ISO pulses (> 50 V) and negative ISO pulses pass the GND and logic
terminals. Therefore a serial protection resistor should be used between the µC and HSD.
Resistor values should be calculated according to the maximum injected current to the I/O
pin of the microcontroller used.
Doc ID 023520 Rev 2
11/87

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet UM1556.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
UM1556VIPower M0-5 and M0-5Enhanced high-side drivers User manualSTMicroelectronics
STMicroelectronics

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar