DataSheet.es    


PDF AT45DB041D-MU-SL954 Data sheet ( Hoja de datos )

Número de pieza AT45DB041D-MU-SL954
Descripción 4-megabit 2.5-volt or 2.7-volt DataFlash
Fabricantes Adesto 
Logotipo Adesto Logotipo



Hay una vista previa y un enlace de descarga de AT45DB041D-MU-SL954 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! AT45DB041D-MU-SL954 Hoja de datos, Descripción, Manual

Features
Single 2.5V or 2.7V to 3.6V Supply
RapidSTM Serial Interface: 66MHz Maximum Clock Frequency
– SPI Compatible Modes 0 and 3
User Configurable Page Size
– 256-Bytes per Page
– 264-Bytes per Page
– Page Size Can Be Factory Pre-configured for 256-Bytes
Page Program Operation
– Intelligent Programming Operation
– 2,048 Pages (256-/264-Bytes/Page) Main Memory
Flexible Erase Options
– Page Erase (256-Bytes)
– Block Erase (2-Kbytes)
– Sector Erase (64-Kbytes)
– Chip Erase (4Mbits)
Two SRAM Data Buffers (256-, 264-Bytes)
– Allows Receiving of Data while Reprogramming the Flash Array
Continuous Read Capability through Entire Array
– Ideal for Code Shadowing Applications
Low-power Dissipation
– 7mA Active Read Current Typical
– 25μA Standby Current Typical
– 15μA Deep Power-down Typical
Hardware and Software Data Protection Features
– Individual Sector
Sector Lockdown for Secure Code and Data Storage
– Individual Sector
Security: 128-byte Security Register
– 64-byte User Programmable Space
– Unique 64-byte Device Identifier
JEDEC Standard Manufacturer and Device ID Read
100,000 Program/Erase Cycles Per Page Minimum
Data Retention – 20 Years
Industrial Temperature Range
Green (Pb/Halide-free/RoHS Compliant) Packaging Options
4-megabit
2.5-volt or
2.7-volt
DataFlash®
AT45DB041D
(Not recommended for
new designs. Use
AT45DB041E.)
1. Description
The AT45DB041D is a 2.5V or 2.7V, serial-interface Flash memory ideally suited for a
wide variety of digital voice-, image-, program code- and data-storage applications.
The AT45DB041D supports RapidS serial interface for applications requiring very
high speed operations. RapidS serial interface is SPI compatible for frequencies up to
66MHz. Its 4,325,376-bits of memory are organized as 2,048 pages of 256-bytes or
264-bytes each. In addition to the main memory, the AT45DB041D also contains two
SRAM buffers of 256-/264-bytes each. The buffers allow the receiving of data while a
page in the main Memory is being reprogrammed, as well as writing a continuous data
stream. EEPROM emulation (bit or byte alterability) is easily handled with a self-con-
tained three step read-modify-write operation. Unlike conventional Flash memories
that are accessed randomly with multiple address lines and a parallel interface, the
DataFlash uses a RapidS serial interface to sequentially access its data. The simple
sequential access dramatically
3595T–DFLASH–8/2013

1 page




AT45DB041D-MU-SL954 pdf
AT45DB041D
6. Read Commands
By specifying the appropriate opcode, data can be read from the main memory or from either
one of the two SRAM data buffers. The DataFlash supports RapidS protocols for Mode 0 and
Mode 3. Please refer to the “Detailed Bit-level Read Timing” diagrams in this datasheet for
details on the clock cycle sequences for each mode.
6.1 Continuous Array Read (Legacy Command – E8H): Up to 66MHz
By supplying an initial starting address for the main memory array, the Continuous Array Read
command can be utilized to sequentially read a continuous stream of data from the device by
simply providing a clock signal; no additional addressing information or control signals need to
be provided. The DataFlash incorporates an internal address counter that will automatically
increment on every clock cycle, allowing one continuous read operation without the need of
additional address sequences. To perform a continuous read from the DataFlash standard page
size (264-bytes), an opcode of E8H must be clocked into the device followed by three address
bytes (which comprise the 24-bit page and byte address sequence) and four don’t care bytes.
The first 11 bits (PA10 - PA0) of the 20-bit address sequence specify which page of the main
memory array to read, and the last nine bits (BA8 - BA0) of the 20-bit address sequence specify
the starting byte address within the page. To perform a continuous read from the binary page
size (256-bytes), the opcode (E8H) must be clocked into the device followed by three address
bytes and four don’t care bytes. The first 11 bits (A18 - A8) of the 19-bits sequence specify which
page of the main memory array to read, and the last 8 bits (A7 - A0) of the 19-bits address
sequence specify the starting byte address within the page. The don’t care bytes that follow the
address bytes are needed to initialize the read operation. Following the don’t care bytes, addi-
tional clock pulses on the SCK pin will result in data being output on the SO (serial output) pin.
The CS pin must remain low during the loading of the opcode, the address bytes, the don’t care
bytes, and the reading of data. When the end of a page in main memory is reached during a
Continuous Array Read, the device will continue reading at the beginning of the next page with
no delays incurred during the page boundary crossover (the crossover from the end of one page
to the beginning of the next page). When the last bit in the main memory array has been read,
the device will continue reading back at the beginning of the first page of memory. As with cross-
ing over page boundaries, no delays will be incurred when wrapping around from the end of the
array to the beginning of the array.
A low-to-high transition on the CS pin will terminate the read operation and tri-state the output
pin (SO). The maximum SCK frequency allowable for the Continuous Array Read is defined by
the fCAR1 specification. The Continuous Array Read bypasses both data buffers and leaves the
contents of the buffers unchanged.
6.2 Continuous Array Read (High Frequency Mode – 0BH): Up to 66MHz
This command can be used with the serial interface to read the main memory array sequentially
in high speed mode for any clock frequency up to the maximum specified by fCAR1. To perform a
continuous read array with the page size set to 264-bytes, the CS must first be asserted then an
opcode 0BH must be clocked into the device followed by three address bytes and a dummy
byte. The first 11 bits (PA10 - PA0) of the 20-bit address sequence specify which page of the
main memory array to read, and the last nine bits (BA8 - BA0) of the 20-bit address sequence
specify the starting byte address within the page. To perform a continuous read with the page
size set to 256-bytes, the opcode, 0BH, must be clocked into the device followed by three
address bytes (A18 - A0) and a dummy byte. Following the dummy byte, additional clock pulses
on the SCK pin will result in data being output on the SO (serial output) pin.
3595T–DFLASH–8/2013
5

5 Page





AT45DB041D-MU-SL954 arduino
AT45DB041D
The WP pin can be asserted while the device is erasing, but protection will not be activated until
the internal erase cycle completes.
Table 7-3. Chip Erase Command
Command
Chip Erase
Byte 1
C7H
Byte 2
94H
Byte 3
80H
Byte 4
9AH
Figure 7-1. Chip Erase
CS
SI
Opcode
Byte 1
Each transition
represents 8 bits
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 4
Note: 1. Refer to the errata regarding Chip Erase on page 52
7.8 Main Memory Page Program Through Buffer
This operation is a combination of the Buffer Write and Buffer to Main Memory Page Program
with Built-in Erase operations. Data is first clocked into buffer 1 or buffer 2 from the input pin (SI)
and then programmed into a specified page in the main memory. To perform a main memory
page program through buffer for the DataFlash standard page size (264-bytes), a 1-byte
opcode, 82H for buffer 1 or 85H for buffer 2, must first be clocked into the device, followed by
three address bytes. The address bytes are comprised of four don’t care bits, 11 page address
bits, (PA10 - PA0) that select the page in the main memory where data is to be written, and nine
buffer address bits (BFA8 - BFA0) that select the first byte in the buffer to be written. To perform
a main memory page program through buffer for the binary page size (256-bytes), the opcode
82H for buffer 1 or 85H for buffer 2, must be clocked into the device followed by three address
bytes consisting of five don’t care bits, 11 page address bits (A18 - A8) that specify the page in
the main memory to be written, and eight buffer address bits (BFA7 - BFA0) that selects the first
byte in the buffer to be written. After all address bytes are clocked in, the part will take data from
the input pins and store it in the specified data buffer. If the end of the buffer is reached, the
device will wrap around back to the beginning of the buffer. When there is a low-to-high transi-
tion on the CS pin, the part will first erase the selected page in main memory to all 1s and then
program the data stored in the buffer into that memory page. Both the erase and the program-
ming of the page are internally self-timed and should take place in a maximum time of tEP.
During this time, the status register will indicate that the part is busy.
8. Sector Protection
Two protection methods, hardware and software controlled, are provided for protection against
inadvertent or erroneous program and erase cycles. The software controlled method relies on
the use of software commands to enable and disable sector protection while the hardware con-
trolled method employs the use of the Write Protect (WP) pin. The selection of which sectors
that are to be protected or unprotected against program and erase operations is specified in the
nonvolatile Sector Protection Register. The status of whether or not sector protection has been
enabled or disabled by either the software or the hardware controlled methods can be deter-
mined by checking the Status Register.
3595T–DFLASH–8/2013
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet AT45DB041D-MU-SL954.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AT45DB041D-MU-SL9544-megabit 2.5-volt or 2.7-volt DataFlashAdesto
Adesto
AT45DB041D-MU-SL9554-megabit 2.5-volt or 2.7-volt DataFlashAdesto
Adesto

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar