DataSheet.es    


PDF TEA1892TS Data sheet ( Hoja de datos )

Número de pieza TEA1892TS
Descripción GreenChip synchronous rectifier controller
Fabricantes NXP Semiconductors 
Logotipo NXP Semiconductors Logotipo



Hay una vista previa y un enlace de descarga de TEA1892TS (archivo pdf) en la parte inferior de esta página.


Total 13 Páginas

No Preview Available ! TEA1892TS Hoja de datos, Descripción, Manual

TEA1892TS
GreenChip synchronous rectifier controller
Rev. 1 — 9 April 2014
Product data sheet
1. General description
The TEA1892TS is a member of the new generation of Synchronous Rectifier (SR)
controller ICs for switched mode power supplies. Its high level of integration allows the
design of a cost-effective power supply with a very low number of external components.
The TEA1892TS is a controller IC dedicated to synchronous rectification on the
secondary side of discontinuous conduction mode and quasi-resonant flyback converters.
The TEA1892TS is fabricated in a Silicon-On-Insulator (SOI) process.
2. Features and benefits
2.1 Distinctive features
Accurate synchronous rectification functionality
Wide supply voltage range (8.5 V to 38 V)
High level of integration, resulting in a very low external component count
High driver output voltage of 10 V to drive all MOSFET brands to the lowest RDSon
Selectable regulation level for driver stage
2.2 Green features
Low current consumption
High system efficiency from no-load to full load
2.3 Protection features
UnderVoltage Protection (UVP)
3. Applications
The TEA1892TS is intended for adapters. The device can also be used in all other
discontinuous conduction mode systems and quasi-resonant flyback systems that
demand a highly efficient and cost-effective solution.

1 page




TEA1892TS pdf
NXP Semiconductors
TEA1892TS
GreenChip synchronous rectifier controller
9656(16(
9
9GHDFW GUY  P9W\S
9UHJ GUY  P9P9W\S
9DFW GUY  P9W\S
SULPDU\
FXUUHQW
$
VHFRQGDU\
FXUUHQW
$
9'5,9(5
Fig 3. Synchronous rectification signals
9
DDD
The level of the driver regulation voltage Vreg(drv) can be selected using the SELREG pin.
When this SELREG pin is grounded, the typical Vreg(drv) equals 42 mV. When the
SELREG pin is left open, the Vreg(drv) level equals 30 mV.
Internally, the SELREG pin has a pull-up current source of 10 A. When this pin is short
circuited to ground, the pin selects the lowest Vreg(drv). If the pin is left open, the highest
Vreg(drv) value is selected.
7.4 Supply management
All internal reference voltages are derived from a temperature compensated, on-chip
band gap circuit.
7.5 Driver
The driver circuit to the external power MOSFET gate has a typical source capability of
400 mA and a typical sink capability of 2.7 A. These capabilities permit fast switch-on and
switch-off of the power MOSFET for efficient operation. The source stage is coupled to the
timer (see Figure 1). When the timer has finished, the source capability is reduced to a
small current (5 mA typical) capable of keeping the driver output voltage at its level.
The output voltage of the driver is limited to 10 V (typical). This high output voltage drives
all MOSFET brands to the minimum on-state resistance.
During start-up conditions (VCC < Vstartup) and undervoltage lockout the driver output
voltage is actively pulled low.
TEA1892TS
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 9 April 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
5 of 13

5 Page





TEA1892TS arduino
NXP Semiconductors
TEA1892TS
GreenChip synchronous rectifier controller
14. Legal information
14.1 Data sheet status
Document status[1][2]
Objective [short] data sheet
Preliminary [short] data sheet
Product [short] data sheet
Product status[3]
Development
Qualification
Production
Definition
This document contains data from the objective specification for product development.
This document contains data from the preliminary specification.
This document contains the product specification.
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
14.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
14.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
TEA1892TS
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 9 April 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
11 of 13

11 Page







PáginasTotal 13 Páginas
PDF Descargar[ Datasheet TEA1892TS.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
TEA1892TSGreenChip synchronous rectifier controllerNXP Semiconductors
NXP Semiconductors

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar