DataSheet.es    


PDF FP6111 Data sheet ( Hoja de datos )

Número de pieza FP6111
Descripción 2A Asynchronous Buck Regulator
Fabricantes Feeling Technology 
Logotipo Feeling Technology Logotipo



Hay una vista previa y un enlace de descarga de FP6111 (archivo pdf) en la parte inferior de esta página.


Total 15 Páginas

No Preview Available ! FP6111 Hoja de datos, Descripción, Manual

FP6111
320KHz, 2A Asynchronous Buck Regulator
General Description
The FP6111 is a wide input range buck switching regulator suitable for most applications. The
FP6111 includes a high current P-MOSFET, a high precision reference (0.8V) for comparing output
voltage with a feedback amplifier, an internal soft start timer and dead-time controller. The oscillator
controls both the maximum duty cycle and PWM frequency.
Features
Precision Feedback Reference Voltage: 0.8V (2%)
Wide Supply Voltage Operating Range: 3.6 to 20V
Low Current Consumption: 3mA
Internal Fixed Oscillator Frequency: 320KHz (Typ.)
Internal Soft-Start Function (SS)
Built-In P-MOSFET for 2A Output Loading
Over Current Protection
Package: SOP-8L
Typical Application Circuit
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.
Website: http://www.feeling-tech.com.tw
Rev. 0.6
1/15

1 page




FP6111 pdf
FP6111
Recommended Operating Conditions
Parameter
Symbol
Conditions
Supply Voltage
VCC
Operating Temperature
Min.
3.6
-25
Typ.
Max.
20
85
Unit
V
°C
DC Electrical Characteristics (VCC=6V, TA = 25°C, unless otherwise noted)
Parameter
Symbol
Conditions
Min. Typ. Max.
Reference
Feedback Voltage
Input Regulation
Feedback Voltage Change with
Temperature
Oscillator Section
VREF
VREF /
VREF
VCC=3.6 to 20 V
VREF / TA= -25 to +25°C
VREF TA= 25 to +85°C
0.784 0.8 0.816
2 12.5
12
12
Oscillation Frequency
f 0.4V < VCOMP < 0.7V
320
Short Circuit or Over Current
Oscillation Frequency
fSC VCOMP<0.4V
30
Frequency Change with Voltage
Frequency Change with
Temperature
Δf / ΔV VCC=3.6V to 25V
Δf / ΔT TA = -25 to +85°C
Idle Period Adjustment Section
5
5
Maximum Duty Cycle
TDUTY VFB =0.2V
80
Output Section
PMOS source Current
PMOS D-S Voltage
Output Leakage Current
PMOS On Resistance
ID
VDSS VCOMP=0.1V
IL
RDS (ON)
VCC=5.0V, VFB=0V
VCC=10V, VFB=0V
-2
-30
5
70 150
42 90
Thermal Shutdown Section
Thermal Shutdown Temperature
+150
Over Current Protection Section
PMOS OCP Current
IOCP VCC=12V
Total Device Section
EN Pin Input Current
IEN VEN = GND
EN Pin On Threshold
VUPPER EN pin upper
EN Pin Off Threshold
VLOW EN pin low
EN Pin Hysteresis
VHYS
Supply Shutdown Current
ISD VEN=0V
Supply Average current
IAVE
4
1.12
0.87
210 250
2
4
20
10
6
Unit
V
mV
%
%
KHz
KHz
%
%
%
A
V
µA
mΩ
mΩ
°C
A
µA
V
V
mV
µA
mA
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.
Website: http://www.feeling-tech.com.tw
Rev. 0.6
5/15

5 Page





FP6111 arduino
Application Information
FP6111
Input Capacitor Selection
The input capacitor must be connected between the VCC and GND pin of the FP6111 to maintain
steady input voltage and filter out the pulsing input current. The voltage rating of input capacitor must
be greater than maximum input voltage plus ripple voltage.
In switch mode, the input current is discontinuous in a buck converter. The source current of the
high-side MOSFET is a square wave. To prevent large voltage transients, a low ESR input capacitor
sized for the maximum RMS current must be used. The RMS value of input capacitor current can be
calculated by:
IRMS IOMAX
VO
VIN
1
VO
VIN

It can be seen that when VO is half of VIN, CIN is under the worst current stress. The worst current
stress on CIN is IO_MAX / 2.
Inductor Selection
The value of the inductor is selected based on the maximum tolerant ripple current. Large
inductance gives low inductor ripple current and small inductance result in high ripple current. However,
the larger value inductor usually has a larger physical size, higher series resistance, and lower
saturation current. On the experience, the value is to allow the peak-to-peak ripple current in the
inductor to be 10%~20% maximum load current. The inductance value can be calculated by:
 L
(VIN VO )
f  IL
VO
VIN
f
(VIN VO )
2 (10% ~ 20%)IO
VO
VIN
The inductor ripple current can be calculated by:
IL
VO
f L
 1
VO
VIN

Choose an inductor that does not saturate under the worst-case load conditions, which is the
load current plus half the peak-to-peak inductor ripple current even at the highest operating
temperature. The peak inductor current is:
IL _ PEAK
IO
IL
2
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.
Website: http://www.feeling-tech.com.tw
Rev. 0.6
11/15

11 Page







PáginasTotal 15 Páginas
PDF Descargar[ Datasheet FP6111.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
FP61112A Asynchronous Buck RegulatorFeeling Technology
Feeling Technology
FP61123A Asynchronous Buck RegulatorFeeling Technology
Feeling Technology
FP6115Asynchronous Step-Down RegulatorFeeling Technology
Feeling Technology
FP6115DR-G1Asynchronous Step-Down RegulatorFeeling Technology
Feeling Technology

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar