DataSheet.es    


PDF XCV800 Data sheet ( Hoja de datos )

Número de pieza XCV800
Descripción Virtex Field Programmable Gate Array
Fabricantes Xilinx 
Logotipo Xilinx Logotipo



Hay una vista previa y un enlace de descarga de XCV800 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! XCV800 Hoja de datos, Descripción, Manual

0
Virtex™ 2.5 VR www.DataSheet4U.com
Field Programmable Gate Arrays
DS003-1 (v2.5 ) April 2, 2001
0 0 Product Specification
Features
• Fast, high-density Field-Programmable Gate Arrays
- Densities from 50k to 1M system gates
- System performance up to 200 MHz
- 66-MHz PCI Compliant
- Hot-swappable for Compact PCI
• Multi-standard SelectIO™ interfaces
- 16 high-performance interface standards
- Connects directly to ZBTRAM devices
• Built-in clock-management circuitry
- Four dedicated delay-locked loops (DLLs) for
advanced clock control
- Four primary low-skew global clock distribution
nets, plus 24 secondary local clock nets
• Hierarchical memory system
- LUTs configurable as 16-bit RAM, 32-bit RAM,
16-bit dual-ported RAM, or 16-bit Shift Register
- Configurable synchronous dual-ported 4k-bit
RAMs
- Fast interfaces to external high-performance RAMs
• Flexible architecture that balances speed and density
- Dedicated carry logic for high-speed arithmetic
- Dedicated multiplier support
- Cascade chain for wide-input functions
- Abundant registers/latches with clock enable, and
dual synchronous/asynchronous set and reset
- Internal 3-state bussing
- IEEE 1149.1 boundary-scan logic
- Die-temperature sensor diode
• Supported by FPGA Foundation™ and Alliance
Development Systems
- Complete support for Unified Libraries, Relationally
Placed Macros, and Design Manager
- Wide selection of PC and workstation platforms
• SRAM-based in-system configuration
- Unlimited re-programmability
- Four programming modes
• 0.22 µm 5-layer metal process
• 100% factory tested
Description
The Virtex FPGA family delivers high-performance,
high-capacity programmable logic solutions. Dramatic
increases in silicon efficiency result from optimizing the new
architecture for place-and-route efficiency and exploiting an
aggressive 5-layer-metal 0.22 µm CMOS process. These
advances make Virtex FPGAs powerful and flexible alterna-
tives to mask-programmed gate arrays. The Virtex family
comprises the nine members shown in Table 1.
Building on experience gained from previous generations of
FPGAs, the Virtex family represents a revolutionary step
forward in programmable logic design. Combining a wide
variety of programmable system features, a rich hierarchy of
fast, flexible interconnect resources, and advanced process
technology, the Virtex family delivers a high-speed and
high-capacity programmable logic solution that enhances
design flexibility while reducing time-to-market.
Table 1: Virtex Field-Programmable Gate Array Family Members
Device
Maximum
System Gates CLB Array Logic Cells Available I/O
XCV50
57,906
16x24
1,728
180
XCV100
108,904
20x30
2,700
180
XCV150
164,674
24x36
3,888
260
XCV200
236,666
28x42
5,292
284
XCV300
322,970
32x48
6,912
316
XCV400
468,252
40x60
10,800
404
XCV600
661,111
48x72
15,552
512
XCV800
888,439
56x84
21,168
512
XCV1000
1,124,022
64x96
27,648
512
Block RAM
Bits
32,768
40,960
49,152
57,344
65,536
81,920
98,304
114,688
131,072
Maximum
SelectRAM+™ Bits
24,576
38,400
55,296
75,264
98,304
153,600
221,184
301,056
393,216
© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS003-1 (v2.5 ) April 2, 2001
Product Specification
www.xilinx.com
1-800-255-7778
Module 1 of 4
1

1 page




XCV800 pdf
0
Virtex™ 2.5 VR www.DataSheet4U.com
Field Programmable Gate Arrays
DS003-2 (v2.8.1) December 9, 2002
0 0 Product Specification
Architectural Description
Virtex Array
The Virtex user-programmable gate array, shown in
Figure 1, comprises two major configurable elements: con-
figurable logic blocks (CLBs) and input/output blocks
(IOBs).
CLBs provide the functional elements for constructing
logic
IOBs provide the interface between the package pins
and the CLBs
CLBs interconnect through a general routing matrix (GRM).
The GRM comprises an array of routing switches located at
the intersections of horizontal and vertical routing channels.
Each CLB nests into a VersaBlockthat also provides local
routing resources to connect the CLB to the GRM.
The VersaRingI/O interface provides additional routing
resources around the periphery of the device. This routing
improves I/O routability and facilitates pin locking.
The Virtex architecture also includes the following circuits
that connect to the GRM.
Dedicated block memories of 4096 bits each
Clock DLLs for clock-distribution delay compensation
and clock domain control
3-State buffers (BUFTs) associated with each CLB that
drive dedicated segmentable horizontal routing
resources
Values stored in static memory cells control the configurable
logic elements and interconnect resources. These values
load into the memory cells on power-up, and can reload if
necessary to change the function of the device.
Input/Output Block
The Virtex IOB, Figure 2, features SelectIOinputs and
outputs that support a wide variety of I/O signalling stan-
dards, see Table 1.
The three IOB storage elements function either as edge-trig-
gered D-type flip-flops or as level sensitive latches. Each
IOB has a clock signal (CLK) shared by the three flip-flops
and independent clock enable signals for each flip-flop.
In addition to the CLK and CE control signals, the three
flip-flops share a Set/Reset (SR). For each flip-flop, this sig-
nal can be independently configured as a synchronous Set,
a synchronous Reset, an asynchronous Preset, or an asyn-
chronous Clear.
The output buffer and all of the IOB control signals have
independent polarity controls.
DLL
IOBs
DLL
VersaRing
CLBs
VersaRing
IOBs
DLL DLL
vao_b.eps
Figure 1: Virtex Architecture Overview
All pads are protected against damage from electrostatic
discharge (ESD) and from over-voltage transients. Two
forms of over-voltage protection are provided, one that per-
mits 5 V compliance, and one that does not. For 5 V compli-
ance, a Zener-like structure connected to ground turns on
when the output rises to approximately 6.5 V. When PCI
3.3 V compliance is required, a conventional clamp diode is
connected to the output supply voltage, VCCO.
Optional pull-up and pull-down resistors and an optional
weak-keeper circuit are attached to each pad. Prior to con-
figuration, all pins not involved in configuration are forced
into their high-impedance state. The pull-down resistors and
the weak-keeper circuits are inactive, but inputs can option-
ally be pulled up.
The activation of pull-up resistors prior to configuration is
controlled on a global basis by the configuration mode pins.
If the pull-up resistors are not activated, all the pins will float.
Consequently, external pull-up or pull-down resistors must
be provided on pins required to be at a well-defined logic
level prior to configuration.
All Virtex IOBs support IEEE 1149.1-compatible boundary
scan testing.
© 1999-2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS003-2 (v2.8.1) December 9, 2002
Product Specification
www.xilinx.com
1-800-255-7778
Module 2 of 4
1

5 Page





XCV800 arduino
R Virtex2.5 V Field Programmable Gate Arrays
General Purpose Routing
Most Virtex signals are routed on the general purpose rout-
ing, and consequently, the majority of interconnect
resources are associated with this level of the routing hier-
archy. The general routing resources are located in horizon-
tal and vertical routing channels associated with the rows
and columns CLBs. The general-purpose routing resources
are listed below.
Adjacent to each CLB is a General Routing Matrix
(GRM). The GRM is the switch matrix through which
horizontal and vertical routing resources connect, and
is also the means by which the CLB gains access to
the general purpose routing.
24 single-length lines route GRM signals to adjacent
GRMs in each of the four directions.
12 buffered Hex lines route GRM signals to another
GRMs six-blocks away in each one of the four
directions. Organized in a staggered pattern, Hex lines
can be driven only at their endpoints. Hex-line signals
can be accessed either at the endpoints or at the
midpoint (three blocks from the source). One third of
the Hex lines are bidirectional, while the remaining
ones are uni-directional.
12 Longlines are buffered, bidwirwewct.DioantalShweireet4sUt.hcaotm
distribute signals across the device quickly and
efficiently. Vertical Longlines span the full height of the
device, and horizontal ones span the full width of the
device.
I/O Routing
Virtex devices have additional routing resources around
their periphery that form an interface between the CLB array
and the IOBs. This additional routing, called the VersaRing,
facilitates pin-swapping and pin-locking, such that logic
redesigns can adapt to existing PCB layouts. Time-to-mar-
ket is reduced, since PCBs and other system components
can be manufactured while the logic design is still in
progress.
Dedicated Routing
Some classes of signal require dedicated routing resources
to maximize performance. In the Virtex architecture, dedi-
cated routing resources are provided for two classes of sig-
nal.
Horizontal routing resources are provided for on-chip
3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row, as shown in Figure 8.
Two dedicated nets per CLB propagate carry signals
vertically to the adjacent CLB.
Tri-State
Lines
CLB
CLB
CLB
CLB
buft_c.eps
Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines
Global Routing
Global Routing resources distribute clocks and other sig-
nals with very high fanout throughout the device. Virtex
devices include two tiers of global routing resources
referred to as primary global and secondary local clock rout-
ing resources.
The primary global routing resources are four
dedicated global nets with dedicated input pins that are
designed to distribute high-fanout clock signals with
minimal skew. Each global clock net can drive all CLB,
IOB, and block RAM clock pins. The primary global
nets can only be driven by global buffers. There are
four global buffers, one for each global net.
The secondary local clock routing resources consist of
24 backbone lines, 12 across the top of the chip and 12
across bottom. From these lines, up to 12 unique
signals per column can be distributed via the 12
longlines in the column. These secondary resources
are more flexible than the primary resources since they
are not restricted to routing only to clock pins.
Clock Distribution
Virtex provides high-speed, low-skew clock distribution
through the primary global routing resources described
above. A typical clock distribution net is shown in Figure 9.
Four global buffers are provided, two at the top center of the
device and two at the bottom center. These drive the four
primary global nets that in turn drive any clock pin.
DS003-2 (v2.8.1) December 9, 2002
Product Specification
www.xilinx.com
1-800-255-7778
Module 2 of 4
7

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet XCV800.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
XCV800Virtex Field Programmable Gate ArrayXilinx
Xilinx

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar