DataSheet.es    


PDF 561622ETP Data sheet ( Hoja de datos )

Número de pieza 561622ETP
Descripción HY5DU561622ETP
Fabricantes Hynix Semiconductor 
Logotipo Hynix Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de 561622ETP (archivo pdf) en la parte inferior de esta página.


Total 29 Páginas

No Preview Available ! 561622ETP Hoja de datos, Descripción, Manual

www.DataSheet4U.com
256Mb DDR SDRAM
HY5DU56822E(L)TP
HY5DU561622E(L)TP
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any
responsibility for use of circuits described. No patent licenses are implied.
Rev. 1.1 /June. 2006
1

1 page




561622ETP pdf
www.DataSheet4U.com
PIN DESCRIPTION
PIN TYPE
CK, /CK
Input
CKE Input
/CS
BA0, BA1
Input
Input
A0 ~ A12
Input
/RAS, /CAS, /WE
Input
DM
(LDM,UDM)
Input
DQS
(LDQS,UDQS)
DQ
VDD/VSS
VDDQ/VSSQ
VREF
NC
I/O
I/O
Supply
Supply
Supply
NC
1
HY5DU56822E(L)TP
HY5DU561622E(L)TP
DESCRIPTION
Clock: CK and /CK are differential clock inputs. All address and control input signals are
sampled on the crossing of the positive edge of CK and negative edge of /CK. Output
(read) data is referenced to the crossings of CK and /CK (both directions of crossing).
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and
device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row
ACTIVE in any bank). CKE is synchronous for POWER DOWN entry and exit, and for SELF
REFRESH entry. CKE is asynchronous for SELF REFRESH exit, and for output disable. CKE
must be maintained high throughout READ and WRITE accesses. Input buffers, excluding
CK, /CK and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are dis-
abled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVCMOS LOW level
after VDD is applied.
Chip Select: Enables or disables all inputs except CK, /CK, CKE, DQS and DM. All com-
mands are masked when CS is registered high. CS provides for external bank selection on
systems with multiple banks. CS is considered part of the command code.
Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVE, Read, Write or PRE-
CHARGE command is being applied.
Address Inputs: Provide the row address for ACTIVE commands, and the column address
and AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the
memory array in the respective bank. A10 is sampled during a precharge command to
determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10
HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The
address inputs also provide the op code during a MODE REGISTER SET command. BA0 and
BA1 define which mode register is loaded during the MODE REGISTER SET command (MRS
or EMRS).
Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command being
entered.
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM
is sampled HIGH along with that input data during a WRITE access. DM is sampled on both
edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS
loading. For the x16, LDM corresponds to the data on DQ0-Q7; UDM corresponds to the
data on DQ8-Q15.
Data Strobe: Output with read data, input with write data. Edge aligned with read data,
centered in write data. Used to capture write data. For the x16, LDQS corresponds to the
data on DQ0-Q7; UDQS corresponds to the data on DQ8-Q15.
Data input / output pin: Data bus
Power supply for internal circuits and input buffers.
Power supply for output buffers for noise immunity.
Reference voltage for inputs for SSTL interface.
No connection.
Rev. 1.1 /June. 2006
5

5 Page





561622ETP arduino
www.DataSheet4U.com
1
HY5DU56822E(L)TP
HY5DU561622E(L)TP
POWER-UP SEQUENCE AND DEVICE INITIALIZATION
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those
specified may result in undefined operation. Power must first be applied to VDD, then to VDDQ, and finally to VREF
(and to the system VTT). VTT must be applied after VDDQ to avoid device latch-up, which may cause permanent dam-
age to the device. VREF can be applied anytime after VDDQ, but is expected to be nominally coincident with VTT.
Except for CKE, inputs are not recognized as valid until after VREF is applied. CKE is an SSTL_2 input, but will detect an
LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS LOW level on CKE during power-up is required to
guarantee that the DQ and DQS outputs will be in the High-Z state, where they will remain until driven in normal oper-
ation (by a read access). After all power supply and reference voltages are stable, and the clock is stable, the DDR
SDRAM requires a 200us delay prior to applying an executable command.
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command
for the Mode Register, with the reset DLL bit deactivated low (i.e. to program operating parameters without resetting
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at LVC-
MOS low state. (All the other input pins may be undefined.)
• VDD and VDDQ are driven from a single power converter output.
• VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation.
• VREF tracks VDDQ/2.
• A minimum resistance of 42 Ohms (22 ohm series resistor + 22 ohm parallel resistor - 5% tolerance) limits the
input current from the VTT supply into any pin.
• If the above criteria cannot be met by the system design, then the following sequencing and voltage relation-
ship must be adhered to during power up.
Voltage description
Sequencing
Voltage relationship to avoid latch-up
VDDQ
After or with VDD
< VDD + 0.3V
VTT After or with VDDQ
< VDDQ + 0.3V
VREF
After or with VDDQ
< VDDQ + 0.3V
2. Start clock and maintain stable clock for a minimum of 200usec.
3. After stable power and clock, apply NOP condition and take CKE high.
4. Issue Extended Mode Register Set (EMRS) to enable DLL.
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200
cycles(tXSRD) of clock are required for locking DLL)
6. Issue Precharge commands for all banks of the device.
7. Issue 2 or more Auto Refresh commands.
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low
Rev. 1.1 /June. 2006
11

11 Page







PáginasTotal 29 Páginas
PDF Descargar[ Datasheet 561622ETP.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
561622ETP HY5DU561622ETPHynix Semiconductor
Hynix Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar