DataSheet.es    


PDF NCV5171 Data sheet ( Hoja de datos )

Número de pieza NCV5171
Descripción Boost Regulators
Fabricantes ON Semiconductor 
Logotipo ON Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de NCV5171 (archivo pdf) en la parte inferior de esta página.


Total 19 Páginas

No Preview Available ! NCV5171 Hoja de datos, Descripción, Manual

NCV5171
1.5 A 280 kHz Boost
Regulators
The NCV5171 is a 280 kHz switching regulator with a high
efficiency, 1.5 A integrated switch. The part operates over a wide input
voltage range, from 2.7 V to 30 V. The flexibility of the design allows
the chip to operate in most power supply configurations, including
boost, flyback, forward, inverting, and SEPIC. The ICs utilize current
mode architecture, which allows excellent load and line regulation, as
well as a practical means for limiting current. Combining high
frequency operation with a highly integrated regulator circuit results
in an extremely compact power supply solution. The circuit design
includes provisions for features such as frequency synchronization,
shutdown, and feedback controls for positive voltage regulation. This
part is pin−to−pin compatible with LT1372/1373.
Features
Integrated Power Switch: 1.5 A Guaranteed
Wide Input Range: 2.7 V to 30 V
High Frequency Allows for Small Components
Minimum External Components
Easy External Synchronization
Built in Overcurrent Protection
Frequency Foldback Reduces Component Stress During anwww.DataSheet4U.com
Overcurrent Condition
Thermal Shutdown with Hysteresis
Shut Down Current: 50 mA Maximum
Pin−to−Pin Compatible with LT1372/1373
NCV Prefix for Automotive and other Applications Requiring Site
and Control Changes
This is a Pb−Free Device
http://onsemi.com
SOIC−8
D SUFFIX
CASE 751
MARKING DIAGRAM AND
PIN CONNECTIONS
1
VC
FB
Test
SS
8
VSW
PGND
AGND
VCC
5171E = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
G = Pb−Free Package
ORDERING INFORMATION
Device
Package
Shipping
NCV5171EDR2G SOIC−8 2500 Units / Box
(Pb−Free)
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2006
November, 2006 − Rev. 1
1
Publication Order Number:
NCV5171/D

1 page




NCV5171 pdf
VCC
SS
FB
AGND
NCV5171
Shutdown
Delay
Timer
2.0 V
Regulator
Sync
Thermal
Shutdown
Oscillator
Frequency
Shift 5:1
1.276 V
0.4 V Detector
+
Positive
Error Amp
S
PWM
Latch
Q
R
Driver
VSW
Switch
Slope
Compensation
×5
PWM
Comparator
+−
Ramp
Summer
63 mW
PGND
VC
Figure 2. Block Diagram
http://onsemi.com
5

5 Page





NCV5171 arduino
NCV5171
The first zero generated by C1 and R1 is:
fZ1
+
1
2pC1R1
The phase lead provided by this zero ensures that the loop
has at least a 45° phase margin at the crossover frequency.
Therefore, this zero should be placed close to the pole
generated in the power stage which can be identified at
frequency:
fP
+
1
2pCORLOAD
where:
CO = equivalent output capacitance of the error amplifier
120pF;
RLOAD= load resistance.
The high frequency pole, fP2, can be placed at the output
filter’s ESR zero or at half the switching frequency. Placing
the pole at this frequency will cut down on switching noise.
The frequency of this pole is determined by the value of C2
and R1:
fP2
+
1
2pC2R1
One simple method to ensure adequate phase margin is to
design the frequency response with a −20 dB per decade
slope, until unity−gain crossover. The crossover frequency
should be selected at the midpoint between fZ1 and fP2 where
the phase margin is maximized.
fP1
fZ1
fP2
Frequency (LOG)
Figure 26. Bode Plot of the Compensation Network
Shown in Figure 25
VSW Voltage Limit
In the boost topology, VSW pin maximum voltage is set by
the maximum output voltage plus the output diode forward
voltage. The diode forward voltage is typically 0.5 V for
Schottky diodes and 0.8 V for ultrafast recovery diodes
VSW(MAX) + VOUT(MAX))VF
where:
VF = output diode forward voltage.
In the flyback topology, peak VSW voltage is governed by:
VSW(MAX) + VCC(MAX))(VOUT)VF) N
where:
N = transformer turns ratio, primary over secondary.
When the power switch turns off, there exists a voltage
spike superimposed on top of the steady−state voltage.
Usually this voltage spike is caused by transformer leakage
inductance charging stray capacitance between the VSW and
PGND pins. To prevent the voltage at the VSW pin from
exceeding the maximum rating, a transient voltage
suppressor in series with a diode is paralleled with the
primary windings. Another method of clamping switch
voltage is to connect a transient voltage suppressor between
the VSW pin and ground.
Magnetic Component Selection
When choosing a magnetic component, one must consider
factors such as peak current, core and ferrite material, output
voltage ripple, EMI, temperature range, physical size and
cost. In boost circuits, the average inductor current is the
product of output current and voltage gain (VOUT/VCC),
assuming 100% energy transfer efficiency. In continuous
conduction mode, inductor ripple current is
IRIPPLE
+
VCC(VOUT * VCC)
(f)(L)(VOUT)
where:
f = 280 kHz.
The peak inductor current is equal to average current plus
half of the ripple current, which should not cause inductor
saturation. The above equation can also be referenced when
selecting the value of the inductor based on the tolerance of
the ripple current in the circuits. Small ripple current
provides the benefits of small input capacitors and greater
output current capability. A core geometry like a rod or
barrel is prone to generating high magnetic field radiation,
but is relatively cheap and small. Other core geometries,
such as toroids, provide a closed magnetic loop to prevent
EMI.
Input Capacitor Selection
In boost circuits, the inductor becomes part of the input
filter, as shown in Figure 28. In continuous mode, the input
current waveform is triangular and does not contain a large
pulsed current, as shown in Figure 27. This reduces the
requirements imposed on the input capacitor selection.
During continuous conduction mode, the peak to peak
inductor ripple current is given in the previous section. As
we can see from Figure 27, the product of the inductor
current ripple and the input capacitor’s effective series
resistance (ESR) determine the VCC ripple. In most
applications, input capacitors in the range of 10 mF to 100 mF
with an ESR less than 0.3 W work well up to a full 1.5 A
switch current.
http://onsemi.com
11

11 Page







PáginasTotal 19 Páginas
PDF Descargar[ Datasheet NCV5171.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
NCV5171Boost RegulatorsON Semiconductor
ON Semiconductor
NCV5171EDR2GBoost RegulatorsON Semiconductor
ON Semiconductor
NCV5173Boost RegulatorsON Semiconductor
ON Semiconductor
NCV5173EDR2GBoost RegulatorsON Semiconductor
ON Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar