X1227 Hoja de datos PDF

PDF X1227 Datasheet ( Hoja de datos )

Número de pieza X1227
Descripción Real Time Clock/Calendar/CPU Supervisor with EEPROM
Fabricantes Xicor 
Logotipo Xicor Logotipo
Vista previa
Total 28 Páginas
X1227 datasheet

1 Page

X1227 pdf
When there is a match, an alarm flag is set. The occur-
rence of an alarm can be determined by polling the
AL0 and AL1 bits or by enabling the IRQ output, using
it as hardware flag.
The alarm enable bits are located in the MSB of the
particular register. When all enable bits are set to ‘0’,
there are no alarms.
The Status Register is located in the CCR Memory
Map at address 003Fh. This is a volatile register only
and is used to control the WEL and RWEL write
enable latches, read two power status and two alarm
bits. This register is separate from both the array and
the Clock/Control Registers (CCR).
– The user can set the X1227 to alarm every Wednes-
day at 8:00 AM by setting the EDWn*, the EHRn*
and EMNn* enable bits to ‘1’ and setting the DWAn*,
HRAn* and MNAn* Alarm registers to 8:00 AM
– A daily alarm for 9:30PM results when the EHRn*
and EMNn* enable bits are set to ‘1’ and the HRAn*
and MNAn* registers are set to 9:30 PM.
*n = 0 for Alarm 0: N = 1 for Alarm 1
Clock/Calendar Registers (SC, MN, HR, DT, MO,
These registers depict BCD representations of the
time. As such, SC (Seconds) and MN (Minutes) range
from 00 to 59, HR (Hour) is 1 to 12 with an AM or PM
indicator (H21 bit) or 0 to 23 (with MIL=1), DT (Date) is
1 to 31, MO (Month) is 1 to 12, YR (Year) is 0 to 99.
Date of the Week Register (DW)
This register provides a Day of the Week status and
uses three bits DY2 to DY0 to represent the seven
days of the week. The counter advances in the cycle
0-1-2-3-4-5-6-0-1-2-… The assignment of a numerical
value to a specific day of the week is arbitrary and may
be decided by the system software designer. The
default value is defined as ‘0’.
24 Hour Time
If the MIL bit of the HR register is 1, the RTC uses a
24-hour format. If the MIL bit is 0, the RTC uses a 12-
hour format and H21 bit functions as an AM/PM indi-
cator with a ‘1’ representing PM. The clock defaults to
standard time with H21=0.
Leap Years
Leap years add the day February 29 and are defined
as those years that are divisible by 4. Years divisible by
100 are not leap years, unless they are also divisible
by 400. This means that the year 2000 is a leap year,
the year 2100 is not. The X1227 does not correct for
the leap year in the year 2100.
Table 2. Status Register (SR)
Addr 7 6 5 4 3 2
Default 0 0 0 0 0 0
BAT: Battery Supply—Volatile
This bit set to “1” indicates that the device is operating
from VBACK, not VCC. It is a read-only bit and is set/
reset by hardware (X1227 internally). Once the device
begins operating from VCC, the device sets this bit to
AL1, AL0: Alarm bits—Volatile
These bits announce if either alarm 0 or alarm 1 match
the real time clock. If there is a match, the respective
bit is set to ‘1’. The falling edge of the last data bit in a
SR Read operation resets the flags. Note: Only the AL
bits that are set when an SR read starts will be reset.
An alarm bit that is set by an alarm occurring during an
SR read operation will remain set after the read opera-
tion is complete.
RWEL: Register Write Enable Latch—Volatile
This bit is a volatile latch that powers up in the LOW
(disabled) state. The RWEL bit must be set to “1” prior
to any writes to the Clock/Control Registers. Writes to
RWEL bit do not cause a nonvolatile write cycle, so the
device is ready for the next operation immediately after
the stop condition. A write to the CCR requires both
the RWEL and WEL bits to be set in a specific
WEL: Write Enable Latch—Volatile
The WEL bit controls the access to the CCR and
memory array during a write operation. This bit is a
volatile latch that powers up in the LOW (disabled)
state. While the WEL bit is LOW, writes to the CCR or
any array address will be ignored (no acknowledge will
be issued after the Data Byte). The WEL bit is set by
writing a “1” to the WEL bit and zeroes to the other bits
of the Status Register. Once set, WEL remains set
until either reset to 0 (by writing a “0” to the WEL bit
and zeroes to the other bits of the Status Register) or
REV 1.1.20 1/13/03
Characteristics subject to change without notice. 5 of 28

5 Page

X1227 arduino
Figure 6. Reset VTRIP Level Sequence
VP = 15V
01234567 01234567 01234567
01 23 4 56 7
Note: BP0, BP1, BP2 must be disabled.
03h 00h
Interface Conventions
The device supports a bidirectional bus oriented proto-
col. The protocol defines any device that sends data
onto the bus as a transmitter, and the receiving device
as the receiver. The device controlling the transfer is
called the master and the device being controlled is
called the slave. The master always initiates data trans-
fers, and provides the clock for both transmit and
receive operations. Therefore, the devices in this family
operate as slaves in all applications.
Clock and Data
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions. See
Figure 7.
Start Condition
All commands are preceded by the start condition,
which is a HIGH to LOW transition of SDA when SCL is
HIGH. The device continuously monitors the SDA and
SCL lines for the start condition and will not respond to
any command until this condition has been met. See
Figure 8.
Stop Condition
All communications must be terminated by a stop
condition, which is a LOW to HIGH transition of SDA
when SCL is HIGH. The stop condition is also used to
place the device into the Standby power mode after a
read sequence. A stop condition can only be issued
after the transmitting device has released the bus. See
Figure 8.
Acknowledge is a software convention used to indicate
successful data transfer. The transmitting device, either
master or slave, will release the bus after transmitting
eight bits. During the ninth clock cycle, the receiver will
pull the SDA line LOW to acknowledge that it received
the eight bits of data. Refer to Figure 9.
The device will respond with an acknowledge after rec-
ognition of a start condition and if the correct Device
Identifier and Select bits are contained in the Slave
Address Byte. If a write operation is selected, the
device will respond with an acknowledge after the
receipt of each subsequent eight bit word. The device
will acknowledge all incoming data and address bytes,
except for:
– The Slave Address Byte when the Device Identifier
and/or Select bits are incorrect
– All Data Bytes of a write when the WEL in the Write
Protect Register is LOW
– The 2nd Data Byte of a Status Register Write Opera-
tion (only 1 data byte is allowed)
In the read mode, the device will transmit eight bits of
data, release the SDA line, then monitor the line for an
acknowledge. If an acknowledge is detected and no
stop condition is generated by the master, the device
will continue to transmit data. The device will terminate
further data transmissions if an acknowledge is not
detected. The master must then issue a stop condition
to return the device to Standby mode and place the
device into a known state.
REV 1.1.20 1/13/03
Characteristics subject to change without notice. 10 of 28

10 Page

PáginasTotal 28 Páginas
PDF Descargar[ X1227.PDF ]

Enlace url

Hoja de datos destacado

Número de piezaDescripciónFabricantes
X1226Real Time Clock/Calendar with EEPROMXicor
X1226Real Time Clock/CalendarIntersil Corporation
Intersil Corporation
X1227Real Time Clock/Calendar/CPU Supervisor with EEPROMXicor
X1227RTC Real TimeClock/Calendar/ CPU SupervisorIntersil Corporation
Intersil Corporation
X1228Real Time Clock/Calendar/CPU Supervisor with EEPROMXicor
X1228Real Time Clock/Calendar/CPU SupervisorIntersil Corporation
Intersil Corporation

Número de piezaDescripciónFabricantes

Low Power Audio Codec.

Analog Devices
Analog Devices

32.768 kHz and MHz GreenCLK.


High Voltage 3 phase Motor Driver IC.


12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.

Index : 0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z    |   2018   |  Contacto  |  Buscar