DataSheet.es    


PDF XMMA1000P Data sheet ( Hoja de datos )

Número de pieza XMMA1000P
Descripción MICROMACHINED ACCELEROMETER
Fabricantes Motorola Semiconductors 
Logotipo Motorola Semiconductors Logotipo



Hay una vista previa y un enlace de descarga de XMMA1000P (archivo pdf) en la parte inferior de esta página.


Total 8 Páginas

No Preview Available ! XMMA1000P Hoja de datos, Descripción, Manual

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Micromachined Accelerometer
The XMMA series of silicon capacitive, micromachined accelerometers
features; signal conditioning, a 4–pole low pass filter and temperature
compensation. Zero–g offset full scale span and filter cut–off are factory set and
require no external devices. A full system self–test capability verifies system
functionality.
The XMMA series of accelerometers is suitable for automotive crash
detection and recording, vibration monitoring, automotive suspension control,
appliance control systems, etc.
Features
Minimum Full Scale Measurement ± 44g
Calibrated, Self–Test
Integral Signal Conditioning and 4–Pole Filter
Linear Output
Robust, High Shock Survivability
Ratiometric
G–Cell, Hermetically Sealed at Wafer Level
Two Packaging Options Available:
1) Plastic DIP for Z Axis Sensing (XMMA1000P)
2) Wingback for X Axis Sensing (XMMA2000W)
Typical Applications
Automotive Crash Detection and Recording
Automotive Suspension Control
Vibration Monitoring and Recording
Appliance Control
Mechanical Bearing Monitoring
Computer Hard Drive Protection
Computer Mouse and Joysticks
Virtual Reality Input Devices
Sports Diagnostic Devices and Systems
Order this document
by XMMA1000P/D
XMMA1000P
XMMA2000W
XMMA1000: Z AXIS SENSITIVITY
XMMA2000: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
± 50g
16 15 14 13 12 11 10 9
1 234567 8
DIP PACKAGE
CASE 648C–03
XMMA1000P
1
2
3
4
5
6
WB PACKAGE
CASE 456–03
XMMA2000W
SIMPLIFIED ACCELEROMETER FUNCTIONAL BLOCK DIAGRAM
G–CELL
SENSOR
INTEGRATOR
GAIN
FILTER
TEMP
COMP
VDD
VOUT
VST
SELF–TEST
CONTROL LOGIC &
EPROM TRIM CIRCUITS
Senseon is a trademark of Motorola, Inc.
Replaces MMA1000P/D
©MMoottoororolal,aInSc.e1n9s97or Device Data
OSCILLATOR
CLOCK GEN.
VSS
1

1 page




XMMA1000P pdf
PRINCIPLE OF OPERATION
The Motorola accelerometer is a surface–micromachined
integrated–circuit accelerometer.
The device consists of a surface micromachined capaci-
tive sensing cell (G–cell) and a CMOS signal conditioning
ASIC contained in a single integrated circuit package. The
sensing element is sealed hermetically at the wafer level
using a bulk micromachined “cap’’ wafer.
The G–Cell is a mechanical structure formed from semi-
conductor materials (polysilicon) using semiconductor pro-
cesses (masking and etching). It consists of two stationary
plates with a moveable plate in–between. The center plate
can be deflected from its rest position by subjecting the sys-
tem to an acceleration (Figure 1).
When the center plate deflects, the distance from it to one
fixed plate will increase by the same amount that the dis-
tance to the other plate decreases. The change in distance is
a measure of acceleration.
The G–Cell plates form two back–to–back capacitors
(Figure 2). As the center plate moves with acceleration, the
distance between the plates changes and each capacitor’s
value will change, (C = Aε/D). Where A is the area of the
plate, ε is the dielectric constant, and D is the distance
between the plates.
The CMOS ASIC uses switched capacitor techniques to
measure the G–Cell capacitors and extract the acceleration
data from the difference between the two capacitors. The
ASIC also signal conditions and filters (switched capacitor)
the signal, providing a high level output voltage that is ratio-
metric and proportional to acceleration.
Acceleration
Figure 1.
Figure 2.
SPECIAL FEATURES
Filtering
The Motorola accelerometers contain an onboard 4–pole
switched capacitor filter. A Bessel implementation is used
because it provides a maximally flat delay response (linear
phase) thus preserving pulse shape integrity. Because the fil-
ter is realized using switched capacitor techniques, there is
no requirement for external passive components (resistors
and capacitors) to set the cut–off frequency.
Noise Calculation
The noise for the Motorola accelerometer is specified as
an rms value which is a statistical value of a gaussian noise
source. To convert the rms values to a peak to peak value at
a particular confidence level refer to Table 1. A sample cal-
culation at a 99.9% confidence level is shown.
XMMA1000P XMMA2000W
Table 1.
Nominal Peak to Peak Value
2.0 rms
3.0 rms
4.0 rms
5.0 rms
6.0 rms
6.6 rms
% Confidence Level
68%
87%
95.40%
98.80%
99.73%
99.90%
Noise rms = 3.5mVrms
Noise peak to peak at a 99.9% confidence level:
3.5mVrms* 6.6 = 23.1mVpp
Self–Test
XMMA sensors provide a self–test feature that allows the
verification of the mechanical and electrical integrity of the
accelerometer at any time before or after installation. This
feature is critical in applications such as automotive airbag
systems where system integrity must be ensured over the life
of the vehicle. A fourth “plate’’ is used in the g–cell as a self–
test plate. This plate is fixed and is located under an ex-
tended portion of the center (moveable) plate. When the user
applies a logic high input to the self–test pin, a calibrated po-
tential is applied across the self–test plate and the moveable
plate. The resulting electrostatic force (Fe = 1/2 AV2/d2)
causes the center plate to deflect. The resultant deflection, is
measured by the accelerometer’s control ASIC and a propor-
tional output voltage results. This procedure assures that
both the mechanical (g–cell) and electronic sections of the
sensor are functioning.
Ratiometricity
The XMMA1000P and XMMA2000W are designed to be
“ratiometric’’. That is, their transfer function will be propor-
tional to the applied supply voltage. This feature allows easy
interfacing to common microcontrollers that use ratiometric
A/D converters for system cost benefits.
In operation, a ratiometric sensor’s gain or “sensitivity’’ will
change 1:1 with applied supply voltage and the zero signal
output will be at midsupply. (2.5 V for a 5 V VDD and 2.625 V
for a 5.25 VDD).
Minimum G Range Calculation
To calculate the minimum g range values of an accelerom-
eter several factors have to be taken into consideration.
These considerations include, the supply voltage, the
device’s sensitivity, offset voltage and output rail. A sample
calculation for the minimum g range is shown below.
To complete the calculation the rail and offset voltages
must be subtracted from the supply voltage, then divided by
the supply voltage multiplied by the device’s worst case
(highest) sensitivity.
* * *VDD 0.56VDD 0.3V
ń ń + + ǒ * ǓVDD(8.64mV V g)
0.44VDD 0.3V
VDD(0.00864)
50.93
34.72
VDD
g
Using the standard five volt power supply, the minimum g
range is calculated to be:
* + [50.926
34.722
5.00
43.98
44g
Motorola Sensor Device Data
5

5 Page










PáginasTotal 8 Páginas
PDF Descargar[ Datasheet XMMA1000P.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
XMMA1000PMICROMACHINED ACCELEROMETERMotorola Semiconductors
Motorola Semiconductors

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar